
Transformable Bottleneck Networks

Kyle Olszewski
University of Southern California

olszewski.kyle@gmail.com

Sergey Tulyakov
Snap Inc.

stulyakov@snap.com

Oliver Woodford
Snap Inc.

oliver.woodford@snap.com

Linjie Luo
Snap Inc.

linjie.luo@snap.com

Hao Li
University of Southern California

hao@hao-li.com

Abstract

We propose a novel approach to performing fine-grained
3D manipulation of image content via a convolutional neu-
ral network, which we call the Transformable Bottleneck
Network (TBN). It applies given spatial transformations
directly to a volumetric bottleneck within our encoder-
bottleneck-decoder architecture. Multi-view supervision
encourages the network to learn to spatially disentangle the
feature space within the bottleneck. The resulting spatial
structure can be manipulated with arbitrary spatial trans-
formations. We demonstrate the efficacy of TBNs for novel
view synthesis, achieving state-of-the-art results on a chal-
lenging benchmark. We demonstrate that the bottlenecks
produced by networks trained for this task contain mean-
ingful spatial structure that allows us to intuitively perform
a variety of image manipulations in 3D, well beyond the
rigid transformations seen during training. These manip-
ulations include non-uniform scaling, non-rigid warping,
and combining content from different images. Finally, we
extract explicit 3D structure from the bottleneck, perform-
ing impressive 3D reconstruction from a single input image.

1. Introduction
Inferring and manipulating the 3D structure of an image

is a challenging task, but one that enables many exciting ap-
plications. By rigidly transforming this structure, one can
synthesize novel views of the content. More general trans-
formations can be used to perform tasks such as warping or
exaggerating features of an object, or fusing components of
different objects. Convolutional Neural Networks (CNNs)
have shown impressive results on various 2D image synthe-
sis and manipulation tasks, but specifying such fine-grained
and varied 3D manipulations of the image content, while
achieving high-quality synthesis results, remains difficult.

Several approaches to providing transformation param-
eters as an input to, and applying such transformations
within, a network have already been explored. A common

Source Novel view synthesisTransformable bottleneck 3D Reconstruction

Stretching Slicing and combining

Figure 1: Applications of TBNs. A Transformable Bottleneck
Network uses one or more images (column 1; here, 4 randomly
sampled views) to encode volumetric bottlenecks (columns 2 & 3),
which are explicitly transformed into and aggregated in an output
view coordinate frame. Transformed bottlenecks are then decoded
to synthesize state-of-the-art novel views (columns 5 & 6), as well
as reconstruct 3D geometry (column 4). Fine-grained and non-
rigid transformations, as well as combinations, can be applied in
3D, allowing creative manipulations (bottom row) that were never
used during training. Images shown are samples of real results.

approach is to pass spatial transformation parameters as an
explicit input vector to the network [24], optionally with
a decoder trained to perform a specific set of transforma-
tions [3, 23]. Another approach is to alter the input by aug-
menting it with auxiliary channels defining the desired spa-
tial transformation [14]. A further approach is to construct a
renderable representation that is spatially transformed prior
to rendering [12, 25].

We propose a novel approach: directly applying the spa-
tial transformations to a volumetric bottleneck within an
encoder-bottleneck-decoder network architecture. We call
these Transformable Bottleneck Networks (TBNs). The net-
work learns that these 3D transformations correspond to

transformations between source and target images.
There are several advantages to this approach. Firstly,

supervising on multi-view datasets encourages the network
to infer spatial structure—it learns to spatially disentangle
the feature space within the bottleneck. Consequently, even
when training a network using only rigid transformations
corresponding to viewpoint changes, we can manipulate the
network output at test time with arbitrary spatial transfor-
mations (see Figs. 1 & 6). The operations enabled by these
transformations thus include not only rotation and transla-
tion, but also effects such as non-uniform 3D scaling and
global or local non-rigid warping. Additionally, bottleneck
representations of multiple inputs can be transformed into,
and combined in, the same coordinate frame, allowing them
to be aggregated naturally in feature space. This can re-
solve ambiguities present in a representation from a single
image. While similar to ideas in Spatial Transformer Net-
works (STN) [9, 11] and a 3D reconstruction method [20]
deriving from it, a key distinction of our approach is that the
spatial transformations are input to our network, as opposed
to inferred by the network. It is precisely this difference that
enables TBNs to make such diverse manipulations.

We highlight the power of this approach by applying it
to novel view synthesis (NVS). NVS is a challenging task,
requiring non-trivial 3D understanding from one or more
images in order to predict corresponding images from new
viewpoints. This allows us to demonstrate both the ability
of a TBN to naturally spatially disentangle features within
a 3D bottleneck volume, and the benefits that this confers.
We compare to leading NVS methods [23, 33, 22, 16], on
images from the ShapeNet dataset [1], and attain state-of-
the-art results on both L1 and SSIM metrics (see Table 1,
and Figs. 1 & 3). We present additional qualitative results
on a synthetic human performance dataset. We also train a
simple voxel occupancy classifier on image segmentations
(i.e. without 3D supervision), and use it to demonstrate ac-
curate 3D reconstructions from a single image. Finally, we
provide qualitative examples of how this bottleneck struc-
ture allows us to perform realistic, varied and creative image
manipulation in 3D (Figs. 1 & 6).

In summary, the main contributions of this work are:
• A novel, transformable bottleneck framework that al-

lows CNNs to perform spatial transformations for
highly controllable image synthesis.
• A state-of-the-art NVS system using TBNs.
• A method for extracting high-quality 3D structure

from this bottleneck, constructed from a single image.
• The ability to perform realistic, varied and creative 3D

image manipulation.

2. Related work
We now review works related to the TBN, in the areas of

image and novel view synthesis, and volumetric reconstruc-
tion and rendering.

2.1. Image and novel view synthesis
Many exciting advances in image synthesis and manip-

ulation have emerged recently that enable the application
of specific styles or attributes. Early approaches generated
natural images using samples from a chosen distribution us-
ing a generative adversarial training scheme [5, 18]. Condi-
tional methods then provided the ability to change the style
of an input image to another style [8, 13]. Initially such
trained networks could only handle one style [34]; more
recent works now allow multiple attribute changes using a
single network, by learning to disentangle these attributes
from the training images [10, 24].

Novel view synthesis (NVS) generates an image from a
new, user specified viewpoint, given one or more images
of a scene from known viewpoints. We focus on methods
that, like ours, can synthesize novel views from a single
input image. This is a highly ill-posed problem, requiring
strong 3D understanding and disentanglement of viewpoint
and object shape from the input image. Since the seminal
work of Hoiem et al. [7], methods have sought to develop
more expressive models to address general NVS.

Early CNN solutions approached the problem by re-
gressing output pixel color in the new view [23, 32] directly
from the input image. Yang et al. [32] disentangle object
identity and pose, and use a recurrent network to rotate an
object in small increments. Tran et al. [24] achieve similar
disentanglement for NVS of faces using only in-the-wild
images. Eslami et al. [3] developed a latent representation
that can be aggregated to combine inputs, and show good
results on synthetic geometric scenes.

Zhou et al. [33] introduced a flow prediction formula-
tion, inferring a mapping of output pixels to input pixels,
rather than directly to color; however, the method lacked a
way to detect and inpaint unseen regions. Park et al. [16]
addressed this with an explicit occlusion detection and in-
painting module for single image inputs. Sun et al. [22]
generalize the approach to an arbitrary number of input im-
ages, predicting flow for each, as well as combining inputs
using a recurrent network; these outputs are then fused us-
ing a per-pixel confidence map per image, also generated by
their network.

A drawback of all these approaches is that they condi-
tion their networks to perform the transformation, limiting
the transformations that can be applied to those that have
been learned. Most recently, methods have been proposed
to generate explicit representations of geometry and appear-
ance that are transformed and rendered using standard ren-
dering pipelines [12, 25]. While these representations can
be rendered from arbitrary viewpoints, they are based on
planar representations and are therefore not able to capture
realistic shape, especially when rendered from side views.
Our TBN approach allows us to perform fine-grained and
varied, even non-rigid, 3D manipulations in the bottleneck
volume, synthesizing them into realistic novel views.

Encoder Resampling
Layer Aggregated

Volumetric
Representation

……

Decoder

Transformable bottleneck

(a) Transformable Bottleneck Network (TBN)
(b) Patch-volume
correspondence

Occupancy
Decoder

Segmentation
Decoder

Target pose

2D

+

3D

2D
3D

2D
3D

Figure 2: A Transformable Bottleneck Network. (a) Network architecture, consisting of three parts: an encoder (2D convolution layers,
reshaping, 3D convolution layers), a resampling layer, and a decoder (a mirror of the encoder architecture). The encoder and decoder are
connected purely via the bottleneck; no skip connections are used. The resampling layer transforms an encoded bottleneck to the target
view via trilinear interpolation. It is parameterless, i.e. transformations are applied explicitly, rather than learned. Multiple inputs can be
aggregated by averaging bottlenecks prior to decoding. (b) A visualization of the conceptual correspondence between an image patch and
a subvolume of the bottleneck. Bottleneck volume visualizations show the cellwise norm of feature vectors. It is interesting that to note
that this norm appears to encode the object shape.

2.2. Volumetric reconstruction and rendering
Several recent methods reconstruct an explicit occu-

pancy volume from a single image [2, 4, 20, 26, 30, 29, 31];
some of these are trained using only supervision from 2D
images [20, 26, 31]. Yan et al. [31] max-pool occupancy
along image rays to produce segmentation masks, and min-
imize their difference w.r.t. the ground-truths. Tulsiani et
al. [26] enforce photo-consistency between projected color
images (given the camera poses) using the correspondences
implied by the occupancy volume. In contrast to these ap-
proaches that use explicit occupancy volumes and render-
ing techniques, the implicit approach proposed by Rezende
et al. [20] is more relevant to our work—both the volumet-
ric representation and the decoder (rendering) are learned,
similar to recent neural rendering work [15]. However, their
method [20] requires the target transformation to be inferred
by the network for NVS, whereas ours requires it to be pro-
vided as input. Our approach removes any limitations on
the transformations that can be applied at test time.

3. Transformable bottleneck networks
In this section we formally define our Transformable

Bottleneck Network architecture and training method.

3.1. Architecture
A TBN architecture (Fig. 2(a)) consists of three blocks:

1. An encoder network E : Ik → Xk with parame-
ters θE , that takes in an image Ik and, through a se-
ries of 2D convolutions, reshaping, and 3D convolu-

tions,1 outputs a bottleneck representation, Xk, struc-
tured as a volumetric grid of cells, each containing an
n-dimensional feature vector.

2. A parameterless bottleneck resampling layer S :
Xk, Fk→l → X′l, that takes a bottleneck represen-
tation and user-provided transformation parameteriza-
tion, Fk→l, as input, and transforms the bottleneck via
a trilinear resampling operation.

3. A decoder network DI : X′l → I ′l with parameters
θI , whose architecture mirrors that of the encoder, that
decodes the transformed bottleneck, X′l, into an output
image, I ′l .

Subscripts k and l represent viewpoints. Neither the en-
coder nor the decoder are trained to perform a transforma-
tion: it is fully encapsulated in the bottleneck resampling
layer. As this layer is parameterless, the network cannot
learn how to apply a particular transformation at all; rather,
it is applied explicitly. A single source image synthesis op-
eration, which is end-to-end trainable, is written as:

I ′l = DI(S(E(Ik, θE), Fk→l), θI). (1)

When Fk→l is the identity transform (i.e. k = l), this oper-
ation defines an auto-encoder network.

3.1.1 Handling multiple input views

Our formulation naturally extends to an arbitrary number of
inputs, both for training and testing, without modifications
to either encoder or decoder. The encoded and transformed

1See the supplementary material for the exact architecture.

representations of all inputs are simply averaged:

X′l =
1

|K|
∑
k∈K

S(Xk, Fk→l), (2)

where K is the set of input viewpoints. The number of in-
puts tested on can differ from the number trained on, which
can differ even within a training batch. We later show that
the model trained with a single input view can effectively
aggregate multiple inputs at inference time, and also that a
model trained on multiple inputs can perform state-of-the-
art inference from a single image.

3.1.2 Bottleneck layout and resampling

The network architecture defines the number of cells along
each side of the bottleneck volume, but not the spatial po-
sition of each cell. Indeed, the framework imposes no
constraints on their position, e.g. the voxel grid cells do
not need to be equally spaced. In this work the grid cells
are chosen to be equally spaced,2 with the volume centered
on the target object and axis aligned with the camera co-
ordinate frame. Perspective effects caused by projection
through a pinhole camera, and the camera parameters that
affect them (such as focal length), are learned in the encoder
and decoder networks, rather than handled explicitly.

Since the bottleneck representation is a volume, it can be
resampled via trilinear interpolation, which is fully differen-
tiable [9, Eqn. 9]. This allows it to be spatially transformed.
The transformation, Fk→l, is parameterized as a flow field
that, for each output grid cell, defines the 3D point in the
input volume to sample to generate it. The decoder takes as
input a volume of the same dimensions as the encoder pro-
duces, therefore the flow field also has these dimensions.
Feature channels form separate volumes that are resampled
independently, then recombined to form the output volume.

When the view transformation is rigid, as in the case of
NVS, the flow field is computed by transforming the cell
coordinates by the inverse transformation.3 Non-rigid defor-
mations can also be applied, enabling creative shape manip-
ulation, which we demonstrate in Sec. 4.4. Importantly, we
do not train on these kinds of transformations.

3.1.3 Geometry decoder

Since the TBN spatially disentangles shape and appearance
within the volumetric bottleneck, it should also be able to
reconstruct an object in 3D from the bottleneck represen-
tation. Indeed, prior work [20, 26] shows that training a
3D reconstruction using the NVS task alone, i.e. without
3D supervision, is possible. We extract shape in the form
of a scalar occupancy volume, O, with one value per bot-
tleneck cell, using a separate, shallow network, occupancy

2The scale of the spacing is unimportant here, as our NVS experiments
only involve camera rotations around the object center.

3The flow is defined from output voxel to input voxel coordinate.

decoder, DO : X→ O. To avoid using any 3D supervision
to train this decoder, we then apply another decoding layer,
DS : O → S, that applies a 1D convolution along the z-
axis (the optical axis), followed by a sigmoid, to generate a
scalar segmentation image S, thus:

S = DS(O, θS), O = DO(X, θO), (3)

where θO and θS are the parameters of the occupancy and
segmentation decoders respectively.

3.2. Training
We train the TBN using the NVS task as follows.

3.2.1 Appearance supervision

NVS requires a minimum of two images of a given ob-
ject from different, known viewpoints.4 Given {Ik, Il} and
Fk→l, we can compute a reconstruction, I ′l , of Il using
equation (1). Using this, we define several losses in image
space with which to train our network parameters. The first
two are a pixel-wise L1 reconstruction loss and an L2 loss
in the feature space of the VGG-19 network, often termed
as the perception loss:

LR(θE , θI) = ||Ik→l − Il||1, (4)

LP(θE , θI) =
∑
i

||Vi(Ik→l)−Vi(Il)||22, (5)

where Vi is the output of the ith layer of the VGG-19 net-
work. To enforce structural similarity of the outputs we
also adopt the structural similarity loss [21, 28], denoted as
LS. Finally, we employ the adversarial loss of Tulyakov et
al. [27], LA, to increase the sharpness of the output image.

3.2.2 Segmentation supervision

Appearance supervision is sufficient for NVS tasks, but to
compute a 3D reconstruction we also require segmentation
supervision,5 in order to learn θO and θS . We therefore as-
sume that for each image Ii we also have a binary maskMi,
with ones on the foreground object pixels and zeros else-
where.6 Segmentation losses are computed in all input and
output views, using the aggregated bottleneck in the multi-
input case, as follows:

LM(θE , θO, θS) =
∑
k∈K

H(DS(S(Ol, Fl→k), θS),Mk),

+ H(DS(Ol, θS),Ml), (6)

4Viewpoints are defined by camera rotation and translation, w.r.t. some
arbitrary reference frame; world coordinates are not required.

53D supervision could be used, but requires ground truth 3D data.
6Segmentation supervision is not a hard constraint, therefore segmen-

tations from state-of-the-art methods (e.g. Mask R-CNN [6]) may suffice.
However, we use ground truth masks in this work.

where Ol = DO(X′l, θO) and H is the binary cross en-
tropy cost, summed over all pixels. Summing over all views
achieves a kind of space carving. Correctly reconstructing
unoccupied cells within the visual hull is difficult to learn
as no 3D supervision is used, but appearance supervision
helps address this.

3.2.3 Optimization

The total training loss, with hyper-parameters λi to control
the contribution of each component, is

LT(Θ) = LR + λ1LP + λ2LS + λ3LA + λ4LM, (7)

This loss is fully differentiable, and the network can be
trained end-to-end by minimizing the loss w.r.t. the network
parameters Θ = {θE , θI , θO, θS} using gradient descent.

4. Experiments
We train and evaluate our framework on a variety of

tasks. We provide quantitative evaluations for our results
for novel view synthesis using both single and multi-view
input, and compare our results to state-of-the-art methods
on an established benchmark. We also perform 3D object
reconstruction from a single image and quantitatively com-
pare our results to recent work [26]. Finally, we provide
qualitative examples of our approach applying creative ma-
nipulations via non-rigid deformations.

4.1. A note on implementation
Our models are implemented and trained using the Py-

Torch framework [17], for automatic differentiation and
parallelized computation for training and inference. We ex-
tended this framework to include a layer to perform par-
allelizable trilinear resampling of a tensor, in order to ef-
ficiently perform our spatial transformations. We plan to
release the source code for our framework to the research
community upon publication.

Each network was trained on 4 NVIDIA P100s, with the
batch at each iteration distributed across the GPUs. As we
found that batch size had no discernible effect on the fi-
nal result, we selected it to maximize GPU utilization. We
trained each model until convergence on the test image set,
which took approximately 8 days. For more details on the
network architecture, training process and datasets used in
our evaluations and results, please consult the supplemen-
tary material.

4.2. Novel view synthesis
Setup. We use renderings of objects obtained from the

ShapeNet [1] dataset, which provides textured CAD models
from a variety of object categories. We measure the capa-
bility of our approach to synthesize new views of objects
under large transformations, for which ground-truth results

Methods Car Chair

L1 SSIM L1 SSIM

1
vi

ew

Tatarchenko 2015 et al. [23] .139 .875 .223 .882
Zhou 2016 et al. [33] .148 .877 .229 .871
Park 2017 et al. [16] .119 .913 .202 .889
Sun 2018 et al. [22] .098 .923 .181 .895

Ours .025 .927 .046 .895

2
vi

ew
s Tatarchenko 2015 et al. [23] .124 .883 .209 .890

Zhou 2016 et al. [33] .107 .901 .207 .881
Sun 2018 et al. [22] .078 .935 .141 .911

Ours .019 .939 .027 .928

3
vi

ew
s Tatarchenko 2015 et al. [23] .116 .887 .197 .898

Zhou 2016 et al. [33] .089 .915 .188 .887
Sun 2018 et al. [22] .068 .941 .122 .919

Ours .017 .943 .023 .936

4
vi

ew
s Tatarchenko 2015 et al. [23] .112 .890 .192 .900

Zhou 2016 et al. [33] .081 .924 .165 .891
Sun 2018 et al. [22] .062 .946 .111 .925

Ours .015 .946 .022 .939

Table 1: Quantitative results on novel view synthesis. We report
the L1 loss (lower is better) and the structural similarity (SSIM) in-
dex (higher is better) for our method and several baseline methods,
for 1 to 4 input views, on both car and chair ShapeNet categories.

are available. We train and evaluate our approach using the
cars and chairs categories, to demonstrate its performance
on objects with different structural properties. Each model
is rendered as 256 × 256 RGB images at 18 azimuth an-
gles sampled at 20-degree intervals and 3 elevations (0, 10
and 20 degrees), for a total of 54 views per model. We
use standard training and test data splits [16, 22, 33], and
train a separate network for each object category (also stan-
dard), using 4 input images to synthesize the target view.
The network architecture and training method were fixed
across categories.

As described in Section 3.1.1, our framework can use
a variable number of input images. Though trained with
4 input images, we demonstrate that our networks can in-
fer high-quality target images using fewer input images
at test time. Using the experimental protocol of Sun et
al. 2018 [22], which uses up to 4 input images to infer a
target image, we report quantitative results for our approach
and others that can use multiple input images [22, 23, 33],
as well as for an approach accepting single inputs [16].

To further demonstrate the applicability of our method
to non-rigid objects with higher pose diversity and lower
appearance diversity, we also train and qualitatively evalu-
ate a network using a multi-view human action dataset [19].
This dataset uses a limited number (186) of textured CAD
models representing human subjects. However, the subjects
are rigged to perform animation sequences representing a
variety of common activities (running, waving, jumping,
etc.), resulting in a much larger number of renderings. Note

Figure 3: Qualitative results on novel view synthesis. Randomly selected NVS samples generated using our method. Left: input images
(3 of the 4 used). Middle: transformable bottleneck and 3D reconstruction. Right: synthesized output views.

that the training process is identical to that used for rigid
objects—input images for a given scene see the subject in a
fixed pose. Thus, the capability to perform non-rigid trans-
formations, as seen in Sec. 4.4, is still implicitly learned by
the network.

Results. Table 1 reports quantitative results across re-
cent methods, for 1 to 4 input views, on car and chair
categories, for both the L1 cost and structural similarity
(SSIM) scores [28], averaged across all pixels in all tar-
get views. Though our networks are trained using exactly
4 input views, we obtain state-of-the-art results across all
metrics, categories and number of input views, even in the
challenging case of single-view input. This demonstrates
that the TBN excels at NVS.

In particular, we reduce the L1 cost by approximately
75% for all numbers of input views, on both chairs and
cars. This indicates that a TBN has significantly higher
pixelwise reconstruction accuracy than other methods. For
SSIM, which is a perceptual measure that compares image
statistics over patches, the results of all the methods are less
spread. Despite this, the TBN consistently outperforms pre-
vious methods on SSIM as well.

Fig. 3 shows qualitative examples on 3 datasets: the
ShapeNet cars and chairs used for our quantitative eval-
uations, and the aforementioned human activity dataset.
Fig. 4 qualitatively compares our results with those of Sun
et al. [22] on several challenging examples requiring large

viewpoint transformations from the chair and car datasets.
Their method has difficulty inferring the proper correspon-
dence between the source and target images for both ob-
ject categories, particularly the more complex and variable
structure of the chairs. Thus, many details are missing or
incorrectly transformed. For cars, errors in the correspon-
dence between local regions of source and target images
cause artifacts, such as the wheel on the front of the car in
row 5. In contrast, our method recovers the overall struc-
ture of both chairs and cars well, improving finer details
as additional input views are added. We note that their re-
sults are generally sharper, as they use flow prediction to di-
rectly sample input pixels to construct the output, whereas
our output images are rendered entirely from the bottleneck
representation, as is required for general 3D manipulation.

4.3. Appearance synthesis for 3D reconstruction
As reported above, our method performs well on NVS

with a single view, and progressively improves as more in-
put views are used. We now show that this trend extends to
3D reconstruction. However, given that more views aid re-
construction, and that our network can generate more views,
an interesting question is whether the generative power of
our network can be used to aid the 3D reconstruction task.
We ran experiments to find out.

Setup. To evaluate our method, we use the 3D recon-
struction evaluation framework from the Differentiable Ray

O
ur

s
Su

n
et

 a
l.

Su
n

et
 a

l.
O

ur
s

Su
n

et
 a

l.
O

ur
s

O
ur

s
Su

n
et

 a
l.

1 input 2 inputs 3 inputs 4 inputs

Input views

Input views

Input views

Input views

Target

Target

Target

Target

Figure 4: Qualitative NVS comparisons. Samples of synthesized
novel views using the method of Sun et al. [22] and ours. Their
method fails to capture overall structure for chairs, and generates
unnatural artifacts on cars, especially around the wheels. The input
views are used in a clockwise order, starting from the top left.

Consistency (DRC) work of Tulsiani et al. [26], which in-
fers a 3D occupancy volume from a single RGB image. We
trained our network on their dataset: multi-view images of
ShapeNet objects, rendered under varying lighting condi-
tions from 10 viewpoints, randomly sampled from uniform
azimuth and elevation distributions with ranges [0, 360) and
[−20, 30], respectively. As our method is trained using a
set of multi-view images and corresponding segmentation
masks, we compare our method to their publicly available
model trained on masked, color images, using 5 random
views of each object. In contrast, for this task our model
was trained using only 2 random views (one input, one out-
put) of each object.

Using the DRC [26] experimental protocol, we report
the mean intersection-over-union (IoU) of the volumes from
our occupancy decoder, computed on the evaluation im-
age set, compared to the ground-truth occupancies obtained
by voxelizing the 3D meshes used to render these images.
Like DRC, we report the IoU attained using the optimal dis-
cretization threshold for each object category.

Results. Figure 5 shows the results of this evaluation.
We report IoU numbers obtained using one real input im-
age, with 0 to 9 additional synthesized views, sampled ei-
ther randomly (red line) or regularly (at 0◦ elevation, blue

TBN using synthesized views GTDRC

extra synthesized views

3D
 re

co
ns

tru
ct

io
n,

 Io
U

0.25

0.31

0.38

0.44

0.50

0 1 2 3 4 5 6 7 8 9

Synthesized views, random pose sampling
DRC (1 view), Tulsiani et al. 2017
TBN, real views, random pose sampling
TBN, synthesized views, regular pose sampling

TBN, synthesized views, random pose sampling

Figure 5: 3D reconstruction results. Quantitative (IoU, follow-
ing the evaluation framework of Tulsiani et al. [26]) and qualitative
results of our method performing 3D reconstruction on the chairs
dataset, from a single input image, supplemented by additional
views synthesized by our network. 0 synthesized views indicates
that only the original input image is used, while 1 to 9 indicate
that we synthesize these additional views and combine the bottle-
necks generated from these viewpoints with those obtained from
the original input view. Results from Tulsiani et al. [26], who use
only one image during inference, are also shown.

line). For comparison, we show results using additional
real images of the target object (green line), randomly sam-
pled from the evaluation set, as well as the results using
DRC [26] with a single input image (yellow line). The fig-
ure also contains qualitative comparisons of results7 using
our best method (regularly sampled synthetic images) with
varying numbers of synthetic images (middle columns),
compared to DRC [26] (left) and the ground truth (right).

Using synthesized views from random poses clearly im-
proves the reconstruction quality as more views are incor-
porated into our representation, though does not match the
quality attained when using the same number of real images
instead. Using synthetic views sampled at regular intervals
around the object’s central axis produces significantly bet-
ter results, achieving superior single view 3D reconstruc-
tion to all other methods when using as few as 3 synthetic
views. This dramatic improvement from randomly to regu-
larly sampled synthetic views can be explained by the fact
that information from each of the regularly sampled views
is much more complementary than for the random views,
that could leave parts of the object “unseen” (or unhalluci-

7We render the voxel grids as meshes using an isosurface method.

nated). That synthetic views should improve the results at
all is a more nuanced argument.

One might imagine that recycling hallucinated views into
the encoder would simply reinforce the existing reconstruc-
tion. However, we argue the following: the encoder learns
to extract the features that allow an image to be transformed,
and the decoder learns to process the transformed features
so as to produce a plausible image under this transforma-
tion. Therefore, consider a chair viewed from only one an-
gle: the encoder could say where in space it believes the
visible parts be, allowing it to be transformed, then the de-
coder could see this partial reconstruction in the bottleneck,
and knowing what chairs look like, hallucinate the unseen
parts. By recycling the synthesized image back through the
encoder, it could then see new parts of the chair, and gen-
erate structure for them also. In essence, it comes down to
where unseen structure is hallucinated within the network.
Since the bandwidths of our encoder and image decoder
are identical, there is no reason for it be in any particular
part. However, because the gradients in the decoder lay-
ers have been passed through fewer other layers, they may
receive a stronger signal for hallucination from the output
view, hence learn it first.

One might expect the occupancy decoder to learn to hal-
lucinate structure as well as the image decoder, but our re-
sults indicate that it doesn’t (see our qualitative reconstruc-
tions with no synthetic views, in Fig. 5). We intuit that this
is because it has much less information (binary vs. color im-
ages) to train on, and concomitantly a significantly smaller
bandwidth. We believe that this, in particular, validates our
hypothesis that appearance supervision improves 3D recon-
struction within the visual hull, in the absence of 3D super-
vision.

4.4. Non-rigid transformations
Spatial disentanglement. Due to the convolutional na-

ture of our network, a subvolume of the 3D bottleneck
broadly corresponds to a patch of the input (if encoding) or
output (if decoding) image, as visualized in Fig. 2(b). Any
of the features in the subvolume, or a combination of them,
can account for the appearance of the image patch; there is
no guarantee that the features used will come from the vox-
els corresponding to the location in 3D space of the surface
seen in the patch.

In our framework, however, 2D supervision from mul-
tiple directions (both input and output views) places mul-
tiple subvolume constraints on where information can be
stored. Storing information in the cells corresponding to
the location in 3D space of the visible surface is the most
efficient layout of information that meets all of those con-
straints, thus the one which achieves the lowest loss given
the available network bandwidth. The effect is therefore
achieved implicitly, rather than explicitly.

Creative manipulation. Based on this effect of spatial

Figure 6: Creative, non-rigid manipulations. Selected examples
of non-rigid 3D manipulations applied to transformable bottle-
necks, for creative image synthesis. Manipulations include: twist-
ing, inflation, non-uniform global and local scaling, and slicing &
stitching.

disentanglement, arbitrary non-rigid volumetric deforma-
tions can be applied on the transformable bottleneck, re-
sulting in a similar transformation of shape of the rendered
object. We demonstrate this qualitatively with a variety cre-
ative tasks, shown in Figure 6, that are performed by manip-
ulating and combining the volumetric bottlenecks extracted
from input images. By rotating the upper and lower por-
tion of the volume in opposite directions (top row), we can
transform different regions of the target into a new shape
that does not correspond to a single rigid transformation.
Non-uniform and/or local scaling can be applied to inflate
(second row) or stretch and shrink (third row) objects. Parts
of a bottleneck can even be replaced with another part from
the same, or a different bottleneck, creating hybrid objects
(bottom row). Many other such manipulations are possible,
far beyond the scope of the rigid transformations trained on.

5. Conclusion
This work has presented a novel approach to applying

spatial transformations in CNNs: applying them directly
to a volumetric bottleneck, within an encoder-bottleneck-
decoder network that we call the Transformable Bottleneck
Network. Our results indicate that TBNs are a powerful
and versatile method for learning and representing the 3D
structure within an image. Using this representation, one
can intuitively perform meaningful spatial transformations
to the extracted bottleneck, enabling a variety of tasks.

We demonstrate state-of-the-art results on novel view
synthesis of objects, producing high quality reconstructions
by simply applying a rigid transformation to the bottle-
neck corresponding to the desired view. We also demon-
strate that the 3D structure learned by the network when
trained on the NVS task can be straightfowardly extracted
from the bottleneck, even without 3D supervision, and fur-

thermore, that the powerful generative capabilities of the
complete encoder-decoder network can be used to substan-
tially improve the quality of the 3D reconstructions by re-
encoding regularly spaced, synthetic novel views. Finally,
and perhaps most intriguingly, we demonstrate that a net-
work trained on purely rigid transformations can be used
to apply arbitrary, non-rigid, 3D spatial transformations to
content in images.

References
[1] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,

Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015.

[2] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3d-
r2n2: A unified approach for single and multi-view 3d object
reconstruction. In Proceedings of the European Conference
on Computer Vision, 2016.

[3] S. A. Eslami, D. J. Rezende, F. Besse, F. Viola, A. S. Mor-
cos, M. Garnelo, A. Ruderman, A. A. Rusu, I. Danihelka,
K. Gregor, et al. Neural scene representation and rendering.
Science, 360(6394):1204–1210, 2018.

[4] R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta.
Learning a predictable and generative vector representation
for objects. In Proceedings of the European Conference on
Computer Vision, 2016.

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Proceedings of the Neural Infor-
mation Processing Systems Conference, pages 2672–2680,
2014.

[6] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-
cnn. In Proceedings of the IEEE International Conference
on Computer Vision, 2017.

[7] D. Hoiem, A. A. Efros, and M. Hebert. Automatic photo
pop-up. In ACM Transactions on Graphics, volume 24,
pages 577–584. ACM, 2005.

[8] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image
translation with conditional adversarial networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017.

[9] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial
transformer networks. In Proceedings of the Neural Infor-
mation Processing Systems Conference, 2015.

[10] G. Lample, N. Zeghidour, N. Usunier, A. Bordes, L. De-
noyer, et al. Fader networks: Manipulating images by sliding
attributes. In Proceedings of the Neural Information Process-
ing Systems Conference, pages 5967–5976, 2017.

[11] C.-H. Lin and S. Lucey. Inverse compositional spatial trans-
former networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

[12] M. Liu, X. He, and M. Salzmann. Geometry-aware deep
network for single-image novel view synthesis. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018.

[13] M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-
image translation networks. In Proceedings of the Neural In-

formation Processing Systems Conference, pages 700–708,
2017.

[14] L. Ma, X. Jia, Q. Sun, B. Schiele, T. Tuytelaars, and
L. Van Gool. Pose guided person image generation. In Pro-
ceedings of the Neural Information Processing Systems Con-
ference, pages 405–415, 2017.

[15] T. Nguyen-Phuoc, C. Li, S. Balaban, and Y. Yang. Render-
net: A deep convolutional network for differentiable render-
ing from 3d shapes. In Proceedings of the Neural Informa-
tion Processing Systems Conference, 2018.

[16] E. Park, J. Yang, E. Yumer, D. Ceylan, and A. C.
Berg. Transformation-grounded image generation network
for novel 3d view synthesis. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2017.

[17] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-
matic differentiation in pytorch. 2017.

[18] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. 2015.

[19] Renderpeople, 2018. http://renderpeople.com.
[20] D. J. Rezende, S. A. Eslami, S. Mohamed, P. Battaglia,

M. Jaderberg, and N. Heess. Unsupervised learning of 3d
structure from images. In Proceedings of the Neural Infor-
mation Processing Systems Conference, 2016.

[21] J. Snell, K. Ridgeway, R. Liao, B. D. Roads, M. C. Mozer,
and R. S. Zemel. Learning to generate images with percep-
tual similarity metrics. In Proceedings of the IEEE Interna-
tional Conference on Image Processing, 2017.

[22] S.-H. Sun, M. Huh, Y.-H. Liao, N. Zhang, and J. J. Lim.
Multi-view to novel view: Synthesizing novel views with
self-learned confidence. In Proceedings of the European
Conference on Computer Vision, 2018.

[23] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Single-view
to multi-view: Reconstructing unseen views with a convolu-
tional network. CoRR abs/1511.06702, 1(2):2, 2015.

[24] L. Tran, X. Yin, and X. Liu. Disentangled representation
learning gan for pose-invariant face recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

[25] S. Tulsiani, R. Tucker, and N. Snavely. Layer-structured 3d
scene inference via view synthesis. In Proceedings of the
European Conference on Computer Vision, 2018.

[26] S. Tulsiani, T. Zhou, A. A. Efros, and J. Malik. Multi-view
supervision for single-view reconstruction via differentiable
ray consistency. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

[27] S. Tulyakov, M.-Y. Liu, X. Yang, and J. Kautz. Mocogan:
Decomposing motion and content for video generation. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018.

[28] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.
Image quality assessment: from error visibility to struc-
tural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004.

[29] J. Wu, Y. Wang, T. Xue, X. Sun, B. Freeman, and J. Tenen-
baum. Marrnet: 3d shape reconstruction via 2.5d sketches.
In Proceedings of the Neural Information Processing Sys-
tems Conference, 2017.

http://renderpeople.com

[30] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum.
Learning a probabilistic latent space of object shapes via 3d
generative-adversarial modeling. In Proceedings of the Neu-
ral Information Processing Systems Conference, 2016.

[31] X. Yan, J. Yang, E. Yumer, Y. Guo, and H. Lee. Perspective
transformer nets: Learning single-view 3d object reconstruc-
tion without 3d supervision. In Proceedings of the Neural
Information Processing Systems Conference, 2016.

[32] J. Yang, S. E. Reed, M.-H. Yang, and H. Lee. Weakly-
supervised disentangling with recurrent transformations for
3d view synthesis. In Proceedings of the Neural Information
Processing Systems Conference, 2015.

[33] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros. View
synthesis by appearance flow. In Proceedings of the Euro-
pean Conference on Computer Vision, 2016.

[34] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-
to-image translation using cycle-consistent adversarial net-
works. In Proceedings of the IEEE International Conference
on Computer Vision, 2017.

